3.5: Derivatives of Exponential and Hyperbolic Functions (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    116570
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives
    • Find the derivative of exponential functions, both natural-based and non-natural-based.
    • Find the derivative of logarithmic functions, both natural-based and non-natural-based.
    • Apply the formulas for derivatives of the hyperbolic functions.
    • Explore applications forthe derivatives of exponential and hyperbolic functionsin the sciences and engineering.

    So far, we have learned how to differentiate a variety of functions, including polynomial, radical, rational, and trigonometric functions. In this section, we explore derivatives of exponential and hyperbolic functions.

    Discovering \(e\)

    In calculus (and often in precalculus), acommon "beginning" limit to investigate numerically is

    \[ \displaystyle\lim_{k \to \infty}{\left(1 + \frac{1}{k}\right)^k}. \nonumber \]

    Table \(\PageIndex{1}\) shows values of this limit for large values of \(k\).

    Table \(\PageIndex{1}\): Investigating a Famous Limit
    \(k\) \(\left(1 + \frac{1}{k}\right)^k\)
    10 2.5937424601...
    100 2.70481382942153...
    1,000 2.71692393223552...
    10,000 2.71814592682436...
    100,000 2.71826823719753...
    1,000,000 2.71828046915643...
    10,000,000 2.71828169398037...
    100,000,000 2.71828178639580...
    1,000,000,000 2.71828203081451...

    We went a little overboard, but you get the point. Itappearsthis limit is approaching some value around \(2.71828\ldots\). This very special value is a non-terminating, non-repeating number. That is, it is an irrational number - justlike \(\pi\). In fact, if we could assign an importanceto the value of this limit, it would be tied with the importance of the numbers \(0\), \(1\), \(\pi\), and \(i = \sqrt{-1}\).

    This limit comes up so often in the sciences that we give it a special name. Rather than calling it, "the limit that approaches \(2.718281828459045\ldots\)," we call it \(e\). As was mentioned, itappearsvia our table that this limit approaches a constant (that we are deciding to label\(e\)); however, the proof of this fact is reserved for later in the course. For now, it's important to have this limit in hand for use.

    An important alternative form for this limit is found by letting \(n = \frac{1}{k}\). As \(k \to \infty\), \(n \to 0\) and we get the form

    \[ \displaystyle\lim_{n\to 0}{\left(1 + n\right)^{1/n}}. \nonumber \]

    Before we move on, let's formalize this definition.

    Definition: \(e\)

    The limit

    \[ \displaystyle\lim_{k \to \infty}{\left(1 + \frac{1}{k}\right)^k} = \displaystyle\lim_{n \to 0}{\left(1 + n\right)^{1/n}}\nonumber \]

    is defined to be the irrational number \(e\).

    Fear not, we will be using this special number shortly; however, before we do, we need to discuss some Calculus.

    Derivatives Exponential Functions

    Just as when we found the derivatives of other functions, we can find the derivatives of exponential functions using formulas. Recall that all non-transformed exponential functions have the basic form \(B(x) = b^x\), where \(b \gt 0\) and \(b \neq 1\). Our initial goal is to prove that exponential functions are continuous everywhere. Once we have this, the proof of the derivative of an exponential function becomes trivial.

    Proving that Exponential Functions are Continuous Everywhere

    In previous courses, the values of exponential functions for all rational numbers were defined. We began with the definition of \(b^n\), where \(n \in \mathbb{N}\), as the product of \(b\) multiplied by itself \(n\) times. Later, we defined \(b^0=1\) , \(b^{−n}=\frac{1}{b^n}\)for \(n \in \mathbb{N}\), and \(b^{s/t}=(\sqrt[t]{b})^s\) for positive integers \(s\) and \(t\). These definitionsdefine exponential functions over the rational numbers, but leaveopen the question of the value of \(b^r\) where \(r\) is anirrational number.

    By assuming the continuity of \(B(x)=b^x,b>0\), we may interpret \(b^r\) as \(\displaystyle \lim_{x \to r}b^x\) where the values of \(x\) as we take the limit are rational. For example, we may view \(4^ \pi \) as the number satisfying

    \[ \begin{array}{rcccl}
    4^3 & < & 4^ \pi& < & 4^4 \\
    4^{3.1} & < & 4^ \pi & < & 4^{3.2} \\
    4^{3.14} & < & 4^ \pi & < & 4^{3.15} \\
    4^{3.141} & < & 4^{ \pi } & < & 4^{3.142} \\
    4^{3.1415} & < & 4^{ \pi } & < & 4^{3.1416} \\
    & & \vdots & &\\
    \end{array}\nonumber \]

    As we see in the following table, \(4^ \pi \approx 77.88.\)

    \(x\) \(4^x\) \(x\) \(4^x\)
    \(4^3\) 64 \(4^{3.141593}\) 77.8802710486
    \(4^{3.1}\) 73.5166947198 \(4^{3.1416}\) 77.8810268071
    \(4^{3.14}\) 77.7084726013 \(4^{3.142}\) 77.9242251944
    \(4^{3.141}\) 77.8162741237 \(4^{3.15}\) 78.7932424541
    \(4^{3.1415}\) 77.8702309526 \(4^{3.2}\) 84.4485062895
    \(4^{3.14159}\) 77.8799471543 \(4^{4}\) 256

    Approximating a Value of \(4^ \pi \)

    To provethat the exponential function \(B(x) = b^x\) is continuous on \(\mathbb{R}\), we need to first prove that \( B(x) = b^x \) is continuous at \( x = 0 \).

    Proof that \( B(x) = b^x \) is continuous at \( x = 0 \)

    Suppose \( x \gt 0 \). \( \forall \epsilon \gt 0 \), if we choose \( \delta = \log_b(1 + \epsilon) \), then

    \[ \begin{array}{rccccll}
    & 0 & \lt & |x - 0| & \lt & \delta & \\
    \implies & & & x& \lt & \delta & \left( x \gt 0 \implies |x| = x \right) \\
    \implies & & &x& \lt & \log_b(1 + \epsilon)& \\
    \implies & & & b^x& \lt & 1 + \epsilon& \\
    \implies & & & b^x - 1 & \lt & \epsilon & \\
    \implies & & & |b^x - 1| & \lt & \epsilon & \left( x \gt 0 \implies b^x \gt b^0 = 1 \implies b^x - 1 \gt 0 \implies b^x - 1 = |b^x - 1|\right) \\
    \end{array} \nonumber \]

    Therefore, \( \displaystyle \lim_{x \to 0^+}b^x = 1 =b^0\).

    Moreover, if\( x \lt 0 \), then\( \forall \epsilon \gt 0 \), we choose \( \delta = -\log_b(1 - \epsilon) \). Therefore,

    \[ \begin{array}{rccccll}
    & 0 & \lt & |x - 0| & \lt & \delta & \\
    \implies & & & -x& \lt & \delta & \left( x \lt 0 \implies |x| = -x \right) \\
    \implies & & & -x& \lt & -\log_b(1 - \epsilon) & \\
    \implies & & & x& \gt & \log_b(1 - \epsilon) & \\
    \implies & & & b^x& \gt & 1 - \epsilon & \\
    \implies & & & b^x - 1 & \gt &-\epsilon &\\
    \implies & & & -(b^x - 1) & \lt &\epsilon &\\
    \implies & & & |b^x - 1| & \lt & \epsilon & \left( x \lt 0 \implies b^x \lt b^0 = 1 \implies b^x - 1 \lt 0 \implies -(b^x - 1) = |b^x - 1| \right)\\
    \end{array} \nonumber \]

    Therefore, \( \displaystyle \lim_{x \to 0^-}b^x = 1 =b^0\).

    Since both one-sided limits are equal to \( b^0 \), \( \displaystyle \lim_{x \to 0}b^x = 1 =b^0\). Thus, \( B(x) = b^x \) is continuous at \( x = 0 \).

    We are now ready to prove that \( B(x) = b^x \) is continuous everywhere.

    Let \(B(x) = b^x\) and let \(a\) be arbitrary. Then

    \[ \begin{array}{rclr}
    \displaystyle \lim_{x \to a}{b^x} & = & \displaystyle \lim_{h \to 0}{b^{a + h}} & \left(\text{Substitution: let }x = a + h \implies h = x - a\text{. Thus, }h \to 0\text{ as }x \to a\right) \\
    & = &\displaystyle \lim_{h \to 0}{\left( b^a \cdotb^h \right)} & \\
    & = &\displaystyleb^a \cdot \lim_{h \to 0}{b^h} & \left(\text{Calculus:Constant Multiple Limit Law}\right) \\
    & = &\displaystyleb^a \cdot b^0& \left(\text{Calculus:}b^x\text{ is continuous at}0 \right) \\
    & = &\displaystyleb^a & \\
    \end{array} \nonumber \]

    Since \(a\) is arbitrary, this shows that the exponential function \(B(x) = b^x\) is continuous everywhere.

    The next theorem is a fascinating fact, andis the student's favorite derivative.In words, the function \(y = e^x\) is the only function (besides \(y = 0\)) whose derivative is itself!

    Theorem \(\PageIndex{1}\): Derivative of \(e^x\)

    \[ \dfrac{d}{dx}\left(e^x\right) = e^x\nonumber \]

    Proof

    Using the limit definition of the derivative, we get the following:

    \[ \begin{array}{rclr}
    \dfrac{d}{dx} \left( e^x \right) & = & \displaystyle\lim_{h \to 0}{ \dfrac{e^{x + h} - e^x}{h} } & \left(\text{Calculus: definition of a derivative}\right) \\
    & = & \displaystyle\lim_{h \to 0}{ \dfrac{e^x \cdote^h- e^x}{h} } & \\
    & = & \displaystyle\lim_{h \to 0}{ \dfrac{e^x \left(e^h-1\right)}{h} } & \\
    & = & \displaystylee^x \cdot \lim_{h \to 0}{ \dfrac{e^h-1}{h} } & \left(\text{Calculus:since }e^x\text{ does not rely on }h\text{, it can be factored out}\right) \\
    \end{array} \nonumber \]

    Recall that we defined \(e\) to be \( \displaystyle \lim_{n \to \infty}{\left(1 + n\right)^{1/n}} \). If we let \(n = e^h - 1\), then \(n + 1 = e^h\). Since exponential functions are continuous everywhere,

    \[ \displaystyle \lim_{h \to 0}{e^h} = e^0 = 1. \nonumber \]

    This means that \(n \to 0\) as \(h \to 0\). Moreover, solving \(n + 1 = e^h\) for \(h\), we get \(\ln{(n+1)} = h\). Thus,

    \[ \begin{array}{rclr}
    \dfrac{d}{dx} \left( e^x \right) & = & \displaystylee^x \cdot \lim_{h \to 0}{ \dfrac{e^h-1}{h} } & \\
    & = & \displaystylee^x \cdot \lim_{n \to 0}{ \dfrac{n}{\ln{(1 + n)}} } & \\
    & = & \displaystylee^x \cdot \lim_{n \to 0}{ \dfrac{1}{\frac{1}{n}\ln{(1 + n)}} } & \\
    & = & \displaystylee^x \cdot \lim_{n \to 0}{ \dfrac{1}{\ln{(1 + n)^{1/n}}} } & \\
    & = & e^x \cdot \dfrac{1}{\displaystyle \lim_{n \to 0}{\ln{(1 + n)^{1/n}}}}& \left(\text{Calculus:Limit Laws}\right) \\
    & = & e^x \cdot \dfrac{1}{\ln{\left( \displaystyle \lim_{n \to 0}{(1 + n)^{1/n}}\right)}}& \left(\text{Calculus:Limit Laws}\right) \\
    & = & e^x \cdot \dfrac{1}{\ln{(e)}}& \left(\text{Definition of }e\right) \\
    & = & e^x \cdot \dfrac{1}{1}& \\
    & = & e^x& \\
    \end{array} \nonumber \]

    Q.E.D.

    Before going into examples, let'sadd a quick corollary.

    Corollary\(\PageIndex{1}\): Derivative of \(b^x\)

    \[ \dfrac{d}{dx}\left(b^x\right) = b^x \ln{(b)}\nonumber \]

    Proof

    \[ \begin{array}{rclr}
    \dfrac{d}{dx}\left( b^x \right) & = & \dfrac{d}{dx}\left( e^{\ln{\left(b^x \right)}}\right) &\\
    & = & \dfrac{d}{dx}\left( e^{x \ln{(b)}}\right) &\\
    & = & e^{x \ln{(b)}} \cdot\ln{(b)}& \left(\text{Calculus: Chain Rule}\right) \\
    & = & e^{\ln{(b^x)}} \cdot\ln{(b)}& \\
    & = & b^x\cdot\ln{(b)}& \\
    \end{array} \nonumber \]

    Q.E.D.

    Example \(\PageIndex{1}\): Derivative of an Exponential Function

    Find the derivative of \(f(x)=e^{\tan(2x)}\).

    Solution

    Using the derivative formula and the Chain Rule,

    \[f^{\prime}(x)=e^{\tan(2x)}\frac{d}{dx}\Big(\tan(2x)\Big)=e^{\tan(2x)}\sec^2(2x) \cdot 2 \nonumber \]

    Example \(\PageIndex{2}\): Combining Differentiation Rules

    Find the derivative of \(y=\frac{e^{x^2}}{x}\).

    Solution

    Use the derivative of the natural exponential function, the Quotient Rule, and the Chain Rule.

    \[\begin{array}{rclr}
    y^{\prime} & = & \dfrac{(e^{x^2} \cdot 2)x \cdot x−1 \cdot e^{x^2}}{x^2} & \left(\text{Apply the Quotient Rule.} \right) \\
    & = & \dfrac{e^{x^2}(2x^2−1)}{x^2} & \\
    \end{array}\nonumber\]

    Exercise \(\PageIndex{2}\)

    Find the derivative of \(h(x)=xe^{2x}\).

    Hint

    Don’t forget to use the Product Rule.

    Answer

    \(h^{\prime}(x)=e^{2x}+2xe^{2x}\)

    Example \(\PageIndex{3}\): Applying the Natural Exponential Function

    A colony of mosquitoes has an initial population of 1000. After \(t\) days, the population is given by \(A(t)=1000e^{0.3t}\). Show that the ratio of the rate of change of the population, \(A^{\prime}(t)\), to the population, \(A(t)\) is constant.

    Solution

    First find \(A^{\prime}(t)\). By using the Chain Rule, we have \(A^{\prime}(t)=300e^{0.3t}.\) Thus, the ratio of the rate of change of the population to the population is given by

    \[\frac{A^{\prime}(t)}{A(t)}=\dfrac{300e^{0.3t}}{1000e^{0.3t}}=0.3. \nonumber \]

    The ratio of the rate of change of the population to the population is the constant 0.3.

    Exercise \(\PageIndex{3}\)

    If \(A(t)=1000e^{0.3t}\) describes the mosquito population after \(t\) days, as in the preceding example, what is the rate of change of \(A(t)\) after 4 days?

    Hint

    Find \(A^{\prime}(4)\).

    Answer

    \(996\)

    Example \(\PageIndex{4}\): Applying Derivative Formulas

    Find the derivative of \(h(x)=\frac{3^x}{3^x+2}\).

    Solution

    \[\begin{array}{rclr}
    h^{\prime}(x) & = & \dfrac{3^x\ln 3(3^x+2)−3^x\ln 3(3^x)}{(3^x+2)^2} & \left(\text{Apply the Quotient Rule.} \right) \\
    & = & \dfrac{2 \cdot 3^x\ln 3}{(3x+2)^2} & \\
    \end{array} \nonumber\]

    Exercise \(\PageIndex{4}\)

    Find the slope for the line tangent to \(y=3^x\) at \(x=2.\)

    Hint

    Evaluate the derivative at \(x=2.\)

    Answer

    \(9\ln(3)\)

    Derivatives of the Hyperbolic Functions

    Recall that the hyperbolic sine and hyperbolic cosine are defined as

    \[\sinh x=\dfrac{e^x−e^{−x}}{2} \nonumber \]

    and

    \[\cosh x=\dfrac{e^x+e^{−x}}{2}. \nonumber \]

    The other hyperbolic functions are then defined in terms of \(\sinh x\) and \(\cosh x\). The graphs of the hyperbolic functions are shown in Figure \(\PageIndex{1}\).

    3.5: Derivatives of Exponential and Hyperbolic Functions (2)

    It is easy to develop differentiation formulas for the hyperbolic functions. For example, looking at \(\sinh x\) we have

    \[\begin{array}{rcl}
    \dfrac{d}{dx} \left(\sinh x \right) & = & \dfrac{d}{dx} \left(\dfrac{e^x−e^{−x}}{2}\right) \\
    & = & \dfrac{1}{2}\left[\dfrac{d}{dx}(e^x)−\dfrac{d}{dx}(e^{−x})\right] \\
    & = & \dfrac{1}{2}[e^x+e^{−x}] \\
    & = \cosh x. \\
    \end{array} \nonumber \]

    Similarly,

    \[\dfrac{d}{dx} \cosh x=\sinh x. \nonumber \]

    We summarize the differentiation formulas for the hyperbolic functions in Table \(\PageIndex{2}\).

    Table \(\PageIndex{2}\): Derivatives of the Hyperbolic Functions
    \(f(x)\) \(\dfrac{d}{dx}f(x)\)
    \(\sinh x\) \(\cosh x\)
    \(\cosh x\) \(\sinh x\)
    \(\tanh x\) \(\text{sech}^2 \,x\)
    \(\text{coth } x\) \(−\text{csch}^2\, x\)
    \(\text{sech } x\) \(−\text{sech}\, x \tanh x\)
    \(\text{csch } x\) \(−\text{csch}\, x \coth x\)

    Let’s take a moment to compare the derivatives of the hyperbolic functions with the derivatives of the standard trigonometric functions. There are a lot of similarities, but differences as well. For example, the derivatives of the sine functions match:

    \[\dfrac{d}{dx} \sin x=\cos x \nonumber \]

    and

    \[\dfrac{d}{dx} \sinh x=\cosh x. \nonumber \]

    The derivatives of the cosine functions, however, differ in sign:

    \[\dfrac{d}{dx} \cos x=−\sin x, \nonumber \]

    but

    \[\dfrac{d}{dx} \cosh x=\sinh x. \nonumber \]

    Example \(\PageIndex{5}\)

    Evaluate the following derivatives:

    1. \(\frac{d}{dx}(\sinh(x^2))\)
    2. \(\frac{d}{dx}(\cosh x)^2\)
    Solution

    Using the formulas in Table \(\PageIndex{2}\) and the Chain Rule, we get


    1. \[\dfrac{d}{dx}(\sinh(x^2))=\cosh(x^2) \cdot 2x\nonumber\]

    2. \[\dfrac{d}{dx}(\cosh x)^2=2\cosh x\sinh x\nonumber\]
    Exercise \(\PageIndex{6}\)

    Evaluate the following derivatives:

    1. \(\frac{d}{dx}(\tanh(x^2+3x))\)
    2. \(\frac{d}{dx}\left(\frac{1}{(\sinh x)^2}\right)\)
    Hint

    Use the formulas in Table \(\PageIndex{2}\) and apply the Chain Rule as necessary.

    Answer a

    \(\frac{d}{dx}(\tanh(x^2+3x))=(\text{sech}^2(x^2+3x))(2x+3)\)

    Answer b

    \(\frac{d}{dx}\left(\frac{1}{(\sinh x)^2}\right)=\frac{d}{dx}(\sinh x)^{−2}=−2(\sinh x)^{−3}\cosh x\)

    Key Concepts

    • On the basis of the assumption that the exponential function \(y=b^x, \,b>0\) is continuous everywhere and differentiable at \(0\), this function is differentiable everywhere and there is a formula for its derivative.
    • We can use a formula to find the derivative of \(y=\ln x\), and the relationship \(\log_b x=\dfrac{\ln x}{\ln b}\) allows us to extend our differentiation formulas to include logarithms with arbitrary bases.
    • Logarithmic differentiation allows us to differentiate functions of the form \(y=g(x)^{f(x)}\) or very complex functions by taking the natural logarithm of both sides and exploiting the properties of logarithms before differentiating.
    • Hyperbolic functions are defined in terms of exponential functions.
    • Term-by-term differentiation yields differentiation formulas for the hyperbolic functions. These differentiation formulas give rise, in turn, to integration formulas.
    • With appropriate range restrictions, the hyperbolic functions all have inverses.
    • Implicit differentiation yields differentiation formulas for the inverse hyperbolic functions, which in turn give rise to integration formulas.
    • The most common physical applications of hyperbolic functions are calculations involving catenaries.

    Key Equations

    • Derivative of the natural exponential function

    \(\dfrac{d}{dx}\Big(e^{g(x)}\Big)=e^{g(x)}g′(x)\)

    • Derivative of the natural logarithmic function

    \(\dfrac{d}{dx}\Big(\ln g(x)\Big)=\dfrac{1}{g(x)}g′(x)\)

    • Derivative of the general exponential function

    \(\dfrac{d}{dx}\Big(b^{g(x)}\Big)=b^{g(x)}g′(x)\ln b\)

    • Derivative of the general logarithmic function

    \(\dfrac{d}{dx}\Big(\log_b g(x)\Big)=\dfrac{g′(x)}{g(x)\ln b}\)

    Glossary

    catenary
    a curve in the shape of the function \(y=a\cdot\cosh(x/a)\) is a catenary; a cable of uniform density suspended between two supports assumes the shape of a catenary
    logarithmic differentiation
    is a technique that allows us to differentiate a function by first taking the natural logarithm of both sides of an equation, applying properties of logarithms to simplify the equation, and differentiating implicitly
    3.5: Derivatives of Exponential and Hyperbolic Functions (2024)
    Top Articles
    Lemon Cherry Runtz Strain: Everything You Need To Know | Cannabis Products World
    Perbelle Cosmetics Review - Must Read This Before Buying
    9Anime Keeps Buffering
    Citi Trends Watches
    Emma Louise (TikTok Star) Biography | Wiki | Age | Net Worth | Career & Latest Info - The Daily Biography
    Tinyzonehd
    Schuylkill County Firewire
    Precision Garage Door Long Island
    Leaks Mikayla Campinos
    Sabermetrics Input Crossword Clue
    Rocky Bfb Asset
    Craiglist Tulsa Ok
    Clemson Sorority Rankings 2022
    Fit 4 Life Murrayville Reviews
    18 Tamil Novels Pdf Free Download
    University Of Michigan Paging System
    MyChart | University Hospitals
    Meg 2: The Trench Showtimes Near Phoenix Theatres Laurel Park
    Kohl's Hixson Tennessee
    Think Up Elar Level 5 Answer Key Pdf
    Aogf Causes.benevity
    Craigslist Swm
    Bayada Bucks Catalog 2023
    Walgreens Pharmacy On Jennings Station Road
    Uhauldealer.com Login Page
    Gold Bowl Vidalia La Menu
    Shannon Sharpe Pointing Gif
    Royal Carting Holidays 2022
    Kostenlose Karneval Google Slides Themen & PowerPoint Vorlage
    Kemono Party Imbapovi
    Winsipedia
    Ripoff Report | MZK Headhunters Inc. complaints, reviews, scams, lawsuits and frauds reported, 0 results
    Game Akin To Bingo Nyt
    Sky Nails Albany Oregon
    Ups Access Point Location Hamburg Photos
    Alineaciones De Rcd Espanyol Contra Celta De Vigo
    Media Press Release | riversideca.gov
    Danielle Longet
    Enlightenment Egg Calculator
    Www.1Tamilmv.cfd
    Congdon Heart And Vascular Center
    Craigslist Philly Free Stuff
    American Idol Winners Wiki
    Stellaris Archaeological Site
    CDER - UTENLANDSKE og NORSKE artister
    Ucla Football 247
    El Confidencial Vanitatis
    Mugshots In Waco Texas
    Espn Masters Leaderboard
    Espn Ppr Fantasy Football Rankings
    Erin Mclaughlin Eyebrow
    Jimmy.johns Order Online
    Latest Posts
    Article information

    Author: Tyson Zemlak

    Last Updated:

    Views: 5750

    Rating: 4.2 / 5 (63 voted)

    Reviews: 94% of readers found this page helpful

    Author information

    Name: Tyson Zemlak

    Birthday: 1992-03-17

    Address: Apt. 662 96191 Quigley Dam, Kubview, MA 42013

    Phone: +441678032891

    Job: Community-Services Orchestrator

    Hobby: Coffee roasting, Calligraphy, Metalworking, Fashion, Vehicle restoration, Shopping, Photography

    Introduction: My name is Tyson Zemlak, I am a excited, light, sparkling, super, open, fair, magnificent person who loves writing and wants to share my knowledge and understanding with you.